
Systemizing and Mitigating Topological Inconsistencies
 in Alibaba’s Microservice Call-graph Dataset

Darby Huye, Lan Liu, and Raja Sambasivan
Tufts University

ACM/SPEC ICPE 2024

2

Modern day distributed applications often built with microservices
• Decomposing applications’ functionalities into many services that coordinate over well-defined

APIs to process requests

• E.g. Google, Meta, Bytedance, Alibaba, etc.

Everything is microservices

Lots of interest in doing research on microservices

But, little is known about concrete characteristics of microservice deployments at companies…

3

Datasets are popular:
• 1.5k stars on GitHub, 137 papers cite the original paper

• Comparing microservice architectures [Google SOSP ’23], simulating realistic
workloads and applications[Mbench] for profiling tail latency [Erms ASPLOS’23],
testing QoS recovery mechanisms[Nodens ATC’23], and latency distribution
predictions [LatenSeer]

Alibaba released microservice call graph datasets*
Call graphs are trees showing path of request being processed by services

Alibaba released two tabular call graph datasets:
• 2021: 12-hour time period, 20 million traces

• 2022: 13-day time period, ~13 billion traces

B

D

0.1.1

E

0.1.2
C

0.1

Example call graph

*https://github.com/alibaba/clusterdata/

4

• Many missing edges resulting in disconnected trace trees
• Incorrect edge identifiers (rpcids) prevent constructing the

tree accurately

Errors in the call graph datasets

B

D

0.1.1

E

0.1.2
C

0.1

Example call graph

Key insight: hidden redundancies in their trace model that give us
a starting point for fixing errors

5

1. Identify categories of errors in the datasets
2. Method to use hidden redundancies in the dataset to recover from errors
3. Analysis of changes in the topological characteristics as a result of fixing

errors
4. Released corrected trace data and code

Key Contributions

6

• Introduction
• Using Alibaba’s datasets
• Casper: Remedying errors using redundancies in trace model
• Evaluation
• Implications of errors in trace data

Outline

7

Alibaba’s (assumed) data collection

Service B
0

D
0.2

rpcid UM DM rpctype rt
0 A B http 8
0 A B http -7

0.1 B C db 0
0.2 B D db 0

Upstream
microservice

Type of call:
• Two-way: http, rpc
• One-way: db, mq, mc

Downstream
microservice

Response
time

0

C
0.1

Service A

Example trace

* focusing on 2021 dataset during this talk

8

Build a call graph for a trace

rpcid UM DM rpctype rt
0 A B http 8
0 A B http -7

0.1 B C db 0
0.2 B D db 0

Example trace
C

0.1 0.2

D

B

0

A

* in an ideal world

Example call graph

9

Build a call graph for a trace

rpcid UM DM rpctype rt
0 A B http 8
0 A B http -7

0.1 B C mq 0
0.1.1.1 D E http 2

0.1.1.1.1 E F db 0
0.1.1.1.1 E G db 0

Example trace

B

0

A

C

0.1

E

0.1.1.1

D
?

0.1.1.1.1

F G

* in the real world

10

Inconsistencies in call graph data

B

0

A

C

0.1

E

0.1.1.1

D
?

0.1.1.1.1

F G

• 99.5% are missing a duplicate row for two-way
communication

• 35.2% are missing all rows for a call
Disconnected graphs likely caused by data loss

• 30.2% of traces have non-unique rpcids
• Non-unique rpcids are propagated to all calls

downstream (rendering them non-unique)
Ambiguous edges likely caused by context
propagation errors (where the rpcid is not
updated) 0.1.1.1.1.1 0.1.1.1.1.1

… …

11

• Introduction
• Using Alibaba’s datasets
• Casper: Remedying errors using redundancies in trace model
• Evaluation
• Implications of errors in trace data

Outline

12

Casper: high-level approach

Approach: Breadth-first reconstruction, level-by level from the table
• At each level look for data loss or CPEs & correct inconsistencies

• Data loss: easy, add missing upstream rpcids until connects to existing
call graph

• CPE: complicated, use redundancies in the table to differentiate calls

Goal: build the largest accurate trace topologies
• Omit ambiguous edges that remain after error correction

13

Casper recovery modes

Y

D

C C

E F

Y Z

0.1 0.2
0.3

0.1.1

0.1.1.1

0.1.1.1.1

0.2.1

0.2.1.1

A

B

?

X

B

C

0.3.1-C-1
0.3.1-C-2

0.3.1-D-1
B

0.3.1.1.1.20.3.1.1.1.1
X

0.3.1.1

0.3.1.1.1

0.3.1-D-1.1

D

6

2 1 3

5 4

Legend
Captured rpcid
Recovered rpcid

Unrecoverable rpcid

X Microservice
Recovered calls

Unrecoverable calls

Fixed trace graph (showing recovered and omitted nodes)

14

Recovery at source of CPE: # of unique calls

C C

0.3

0.3.1-C-1
0.3.1-C-2

0.3.1-D-1
B

D

3

Calculating the number of calls to a DM
• True number of calls is unknown (due to data loss), but can
find the minimum

• rt values are rounded down, anything below a threshold is
rounded to 0

• -rt rows cannot be paired with 0 rt rows

rpcid UM DM rpctype rt
0.3.1 B C http 2
0.3.1 B C http 0
0.3.1 B C http 0
0.3.1 B C http 0
0.3.1 B D mq 0

2) Extra fast row:

1) Number of fast calls (0 rt):

3) Number of slow calls:

Total number of calls: fast + slow calls

1

2
3

15

• Introduction
• Using Alibaba’s datasets
• Casper: Remedying errors using redundancies in trace model
• Evaluation
• Implications of errors in trace data

Outline

16

Additional complete traces are different from original complete traces
Casper increases the number of complete traces from 58% to 84%

Additional 26% of traces are larger, wider, and deeper than original set of complete traces

17

Methods of building traces

Naive-rpcid[Alibaba]:
using assumptions
provided in paper

Casper:
recover from
errors in data

Naive-accurate:
only preserve

traces that meet all
assumptions

Partial[LatenSeer]:
keep portions of trace that
meet assumptions, remove

anything downstream
from an inconsistency

rpcid UM DM rpctype rt
0.1 A B http +/-

0.1.1.1 C D http +/-
0.1.1.1 C E db +

B

0.1

A

D

0.1.1.1

C

B

0.1

A

B

0.1

A

D

0.1.1.1-D

E

0.1.1.1-E
C

0.1.1

18

Casper traces are larger, deeper, and wider than other methods

19

• Introduction
• Using Alibaba’s datasets
• Casper: Remedying errors using redundancies in trace model
• Evaluation
• Implications of errors in trace data

Outline

20

Implications & future work

Proper context propagation is essential for observability in
distributed systems

Redundancies in trace models can be powerful for recovering
from errors

Users of Alibaba’s call graph data should be aware of the data
quality issues and the impact they can have on research

21

• Classify inconsistencies in Alibaba’s call graph dataset

• Present Casper: a tool that uses redundancies in Alibaba’s
trace model to fix errors

• Showed Casper traces are larger and wider than other rebuild
methods

• Released corrected traces and Casper’s code

Casper Summary

https://github.com/
docc-lab/casper

https://doi.org/
10.7910/DVN/SS9SIY

Y

D

C C

E F

Y Z

A

B

?

X

B

C

B

D

X

22

• [Google SOSP ’23]: Korakit Seemakhupt, Brent E. Stephens, Samira Khan, Sihang Liu, Hassan Wassel, Soheil Hassas Yeganeh, Alex C. Snoeren, Arvind
Krishnamurthy, David E. Culler, and Henry M. Levy. 2023. A Cloud-Scale Characterization of Remote Procedure Calls. In Proceedings of the 29th Symposium
on Operating Systems Principles (SOSP '23). Association for Computing Machinery, New York, NY, USA, 498–514. https://doi.org/
10.1145/3600006.3613156

• [Erms ASPLOS’23]: Shutian Luo, Huanle Xu, Kejiang Ye, Guoyao Xu, Liping Zhang, Jian He, Guodong Yang, and Chengzhong Xu. 2022. Erms: Efficient
Resource Management for Shared Microservices with SLA Guarantees. In Proceedings of the 28th ACM International Conference on Architectural Support
for Programming Languages and Operating Systems, Volume 1 (ASPLOS 2023). Association for Computing Machinery, New York, NY, USA, 62–77. https://
doi.org/10.1145/3567955.3567964

• [Nodens ATC’23]: Jiuchen Shi, Hang Zhang, Zhixin Tong, Quan Chen, Kaihua Fu, and Minyi Guo. 2023. Nodens: Enabling Resource Efficient and Fast QoS
Recovery of Dynamic Microservice Applications in Datacenters. 2023 USENIX Annual Technical Conference (USENIX ATC 23). https://www.usenix.org/
conference/atc23/presentation/shi

• [LatenSeer]: Yazhuo Zhang, Rebecca Isaacs, Yao Yue, Juncheng Yang, Lei Zhang, and Ymir Vigfusson. 2023. LatenSeer: Causal Modeling of End-to-End
Latency Distributions by Harnessing Distributed Tracing. In Proceedings of the 2023 ACM Symposium on Cloud Computing (SoCC '23). Association for
Computing Machinery, New York, NY, USA, 502–519. https://doi.org/10.1145/3620678.3624787

• [Mbench]: A. Detti, L. Funari and L. Petrucci, "μBench: An Open-Source Factory of Benchmark Microservice Applications," in IEEE Transactions on Parallel
and Distributed Systems, vol. 34, no. 3, pp. 968-980, 1 March 2023, doi: 10.1109/TPDS.2023.323644

Citations

https://doi.org/10.1145/3600006.3613156
https://doi.org/10.1145/3600006.3613156
https://doi.org/10.1145/3600006.3613156
https://doi.org/10.1145/3600006.3613156

