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Modern day distributed applications often built with microservices 
• Decomposing applications’ functionalities into many services that coordinate over well-defined 

APIs to process requests  

• E.g. Google, Meta, Bytedance, Alibaba, etc.

Everything is microservices

Lots of interest in doing research on microservices 

But, little is known about concrete characteristics of microservice deployments at companies…
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Datasets are popular:  
• 1.5k stars on GitHub, 137 papers cite the original paper 

• Comparing microservice architectures [Google SOSP ’23], simulating realistic 
workloads and applications[Mbench] for profiling tail latency [Erms ASPLOS’23], 
testing QoS recovery mechanisms[Nodens ATC’23], and latency distribution 
predictions [LatenSeer]

Alibaba released microservice call graph datasets*
Call graphs are trees showing path of request being processed by services 

Alibaba released two tabular call graph datasets: 
• 2021: 12-hour time period, 20 million traces 

• 2022: 13-day time period, ~13 billion traces
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*https://github.com/alibaba/clusterdata/
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• Many missing edges resulting in disconnected trace trees 
• Incorrect edge identifiers (rpcids) prevent constructing the 

tree accurately  

Errors in the call graph datasets
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Key insight: hidden redundancies in their trace model that give us 
a starting point for fixing errors



5

1. Identify categories of errors in the datasets 
2. Method to use hidden redundancies in the dataset to recover from errors 
3. Analysis of changes in the topological characteristics as a result of fixing 

errors  
4. Released corrected trace data and code 

Key Contributions
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• Introduction 
• Using Alibaba’s datasets 
• Casper: Remedying errors using redundancies in trace model 
• Evaluation  
• Implications of errors in trace data 

Outline
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Alibaba’s (assumed) data collection  
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* focusing on 2021 dataset during this talk



8

Build a call graph for a trace
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Build a call graph for a trace

rpcid UM DM rpctype rt
0 A B http 8
0 A B http -7

0.1 B C mq 0
0.1.1.1 D E http 2

0.1.1.1.1 E F db 0
0.1.1.1.1 E G db 0

Example trace
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Inconsistencies in call graph data 
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• 99.5% are missing a duplicate row for two-way 
communication 

• 35.2% are missing all rows for a call 
Disconnected graphs likely caused by data loss 

• 30.2% of traces have non-unique rpcids  
• Non-unique rpcids are propagated to all calls 

downstream (rendering them non-unique) 
Ambiguous edges likely caused by context 
propagation errors (where the rpcid is not 
updated) 0.1.1.1.1.1 0.1.1.1.1.1

… …
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• Introduction 
• Using Alibaba’s datasets 
• Casper: Remedying errors using redundancies in trace model 
• Evaluation  
• Implications of errors in trace data 

Outline
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Casper: high-level approach

Approach: Breadth-first reconstruction, level-by level from the table 
• At each level look for data loss or CPEs & correct inconsistencies  

• Data loss: easy, add missing upstream rpcids until connects to existing 
call graph 

• CPE: complicated, use redundancies in the table to differentiate calls

Goal: build the largest accurate trace topologies 
• Omit ambiguous edges that remain after error correction
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Casper recovery modes
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Recovery at source of CPE: # of unique calls
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Calculating the number of calls to a DM 
• True number of calls is unknown (due to data loss), but can 
find the minimum  

• rt values are rounded down, anything below a threshold is 
rounded to 0  

• -rt rows cannot be paired with 0 rt rows

rpcid UM DM rpctype rt
0.3.1 B C http 2
0.3.1 B C http 0
0.3.1 B C http 0
0.3.1 B C http 0
0.3.1 B D mq 0

2) Extra fast row:

1) Number of fast calls (0 rt):

3) Number of slow calls:

Total number of calls: fast + slow calls
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• Introduction 
• Using Alibaba’s datasets 
• Casper: Remedying errors using redundancies in trace model 
• Evaluation  
• Implications of errors in trace data 

Outline
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Additional complete traces are different from original complete traces 
Casper increases the number of complete traces from 58% to 84%

Additional 26% of traces are larger, wider, and deeper than original set of complete traces
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Methods of building traces

Naive-rpcid[Alibaba]:   
using assumptions 
provided in paper 

Casper:  
recover from 
errors in data

Naive-accurate: 
only preserve 

traces that meet all 
assumptions

Partial[LatenSeer]:  
keep portions of trace that 
meet assumptions, remove 

anything downstream 
from an inconsistency
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Casper traces are larger, deeper, and wider than other methods
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• Introduction 
• Using Alibaba’s datasets 
• Casper: Remedying errors using redundancies in trace model 
• Evaluation  
• Implications of errors in trace data 

Outline
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Implications & future work

Proper context propagation is essential for observability in 
distributed systems 

Redundancies in trace models can be powerful for recovering 
from errors

Users of Alibaba’s call graph data should be aware of the data 
quality issues and the impact they can have on research
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• Classify inconsistencies in Alibaba’s call graph dataset 

• Present Casper: a tool that uses redundancies in Alibaba’s 
trace model to fix errors  

• Showed Casper traces are larger and wider than other rebuild 
methods 

• Released corrected traces and Casper’s code

Casper Summary

https://github.com/
docc-lab/casper

https://doi.org/
10.7910/DVN/SS9SIY
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